
Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

Optimizing Supermarket Layouts with Graph Theory

to Enhance Consumer Experience

Alvin Christopher Santausa - 135230331

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
1alvinchrisantausa@gmail.com, 13523033@std.stei.itb.ac.id

Abstract—This paper explores the application of graph theory to

optimize supermarkets layouts to enhance the consumer

experience. By representing supermarket layouts as graphs, where

nodes represent product categories and edges represent distances,

the shortest through all points (categories) while visiting each

exactly once can be determined using the Hamiltonian circuit/path.

This can be solved by using several algorithms, including Held-

Karp algorithm. This approach aims to provide consumers with a

more convenient shopping experience by ensuring efficient

navigation through all categories, thereby maximizing product

exposure.

Keywords—Graph, Hamiltonian Circuit, Hamiltonian Path,

Travelling Salesman Problem, Held-Karp, Shortest Path.

I. INTRODUCTION

Supermarket layouts with numerous categories and aisles

often make navigation confusing and overwhelming for

consumers. Consumers/shoppers may find it difficult to locate

specific items or determine an efficient route through the store.

It can not only detract the shopping experience but also result in

missed opportunities for product exposure.

Stores like IKEA solve this problem by using a “racetrack

layout” to providing guidance for customers through a

predefined path, increasing exposure to products. Supermarkets

could implement a similar solution by using graph theory to find

an efficient route. Optimal routes from the entrance area to the

checkout area, while still making sure all categories are visited

by consumers can be identified using the Hamiltonian path or

Hamiltonian circuit, depending on the layout

• If the entrance and checkout are at the same location,

then we can use the Hamiltonian circuit, otherwise

• If the entrance and checkout are at different locations,

we can use the Hamiltonian path.

This problem is analogous to the Travelling Salesman

Problem (TSP) where the goal is to find the shortest path from

node to a node while making sure other nodes are visited exactly

once. Supermarkets layouts can be represented as a graph, where

• Nodes represent categories or sections

• Edges represent paths between categories

• Weights represent distances

With this representation, we can find the shortest route we

need by determining the Hamiltonian path/circuit using the

Held-Karp algorithm. However, if there is no Hamiltonian

path/circuit (it is impossible to visit all nodes exactly one time

from start to finish), then we can not use this approach and have

to use another approach.

Once the shortest route is identified, supermarkets can also

rearrange category locations based on the route order. For

instance, the most frequently purchased category can be placed

at the first node of the path/route, second most purchased

category at the second node, and so on. This will enhance

consumers’ convenience by not only providing a shortest route

to go to all categories but also allowing them to find items from

the most popular category quickly, improving their overall

shopping experience.

II. THEORETICAL FOUNDATION

A. Graph

Graph is an object that consists of a vertex set (V) and an edge

set (E). Vertex set (V) is a set of points often called vertices or

nodes, which are the fundamental units of the graph. Edge set

(E) is a set of connections often called edges or links that

represent relationships between the vertices. A graph G is

represented as

𝐺 = (𝑉, 𝐸)

Where:

• 𝑉 is a non-empty finite set of vertices

• 𝐸 is a set of pairs of elements of 𝑉

Figure 1 A Graph

Source: https://github.com/Incheon21/MatdisMakalah

Graph can be classified based on the nature of their vertices

and their vertices. There are many types of graphs including

simple graph, multigraph, directed graph, undirected graph,

mailto:1alvinchrisantausa@gmail.com
mailto:13523033@std.stei.itb.ac.id
https://github.com/Incheon21/MatdisMakalah

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

weighted graph, unweighted graph, and many more.

• Undirected Graph

Figure 2 Undirected Graph

Source: https://github.com/Incheon21/MatdisMakalah

Undirected graph is a type of graph where the edges

have no direction. This means that if there is an edge

between two vertices u and v, it can be traversed in

either direction

• Weighted Graph

Figure 3 Weighted Graph

Source: https://github.com/Incheon21/MatdisMakalah

Weighted Graph is a type of graph where each edge

is assigned to a numerical value called weight. These

weights can represent various properties such as

distance, cost, time, or capacity on the application.

Graphs are versatile structures used to model relationships,

interactions, and networks across a wide range of disciplines.

Their flexibility and applicability make them fundamental in

many real-world scenarios. They are commonly represented

using mathematical structures like matrices or lists to simplify

analyzing and working with graphs computationally. The choice

of representation depends on the graph’s characteristics and the

computational problem being solved. Graphs can be represented

as an adjacency matrix, incidence matrix, adjacency list, and

many more.

1. Adjacency Matrix

Nodes 1 2 3 4 5

1 0 1 1 1 0

2 1 0 0 1 0

3 1 0 0 0 0

4 1 1 0 0 1

5 0 0 0 1 0

Adjacency matrix is a square matrix A of size

|𝑉| × |𝑉|, where |𝑉| is the number of vertices in the

graph [3]. Each element 𝑎𝑖𝑗 represents the relationship

between vertices 𝑖 and 𝑗. In the undirected graph, the

matrix is symmetric, 𝑎𝑖𝑗 = 𝑎𝑖𝑗, but in the directed

graph, the matrix may not be symmetric, as 𝑎𝑖𝑗 ≠ 𝑎𝑖𝑗.

In the weighted graph, the matrix entries 𝑎𝑖𝑗 store the

weight of the edge. If there is no edge, the value is

typically 0 or ∞. In unweighted graph, the matrix

entries 𝑎𝑖𝑗 are 1 (edge exists) or 0 (no edge).

B. Hamiltonian Circuit/Path

In graph theory, a Hamilton circuit is a circuit that visits every

vertex exactly once, without repeating any vertex. Similarly, a

Hamilton path also visits every vertex once with no repeats,

but have different start and end vertex [4]. These concepts are

crucial in solving optimization problems where traversing all

points efficiently is necessary, such as in logistics, network

design, or supermarket layout optimization.

Figure 4 A Supermarket

Source: https://study.com/academy/lesson/hamilton-circuits-

and-hamilton-paths.html

https://github.com/Incheon21/MatdisMakalah
https://github.com/Incheon21/MatdisMakalah
https://study.com/academy/lesson/hamilton-circuits-and-hamilton-paths.html
https://study.com/academy/lesson/hamilton-circuits-and-hamilton-paths.html

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

C. Travelling Salesman problem (TSP)

Figure 5 Travelling Salesman Problem

Source: https://www.lystloc.com/blog/what-is-a-

travelling-salesman-problem-tsp/

Travelling Salesman Problem (TSP) is a classic optimization

problem in mathematics and computer science that formulated

in 1930 by Karl Menger. It involves finding the shortest possible

route for a salesman to visit a given set of cities exactly once and

return to the starting point (Hamiltonian cycle). TSP has

practical applications in various fields, far beyond its humble

beginnings. It applied in logistics (optimizing delivery routes),

manufacturing (tool path optimizations), DNA sequencing, and

many more. TSP is classified as an NP-hard problem, meaning

that as the number of cities increases, the complexity of finding

an optimal solution grows exponentially, making it

computationally challenging to solve for large datasets. There

are two approaches to solve TSP.

1. Exact Algorithms

the brute-force approach can be used to evaluate all

possible permutations to find the optimal route

2. Heuristic and Approximation Algorithms

It is useful for larger instances because it provides

approximate solutions within a reasonable timeframe

but does not guarantee the optimal solution.

D. Held-Karp Algorithm

Held-Karp algorithm or Bellman-Held-Karp algorithm is a

dynamic programming solution that found by Bellman, Held,

and Karp to solve the Travelling Salesman Problem (TSP)

exactly. This algorithm accepts a distance matrix of a cities set

and then it will find significantly reduces the time complexity

compared to brute-force methods by storing and reusing

intermediate results (subproblems). This algorithm has better

time complexity 𝑂(2𝑛 ∙ 𝑛) rather than the time complexity

𝑂(𝑛!) of brute-force approach. The Held-Karp algorithm builds

the solution incrementally by breaking the problem into smaller

subproblems, using dynamic programming to avoid redundant

computations, and exploring all possible subsets of cities to find

the shortest path to each subset, and finally combining these

results.

The key idea of this algorithm is to represent the problem

using subsets of cities. It defines a dynamic programming table

𝑑𝑝[𝑆][𝑖], where S is a subset of cities, and i is the last city visited

in the subset. The value of 𝑑𝑝[𝑆][𝑖] stores the shortest path that

visits all cities in the subset S and ends at city i. The algorithm

builds the solution incrementally with the recursive relation:

𝑑𝑝[𝑆][𝑖] = min(𝑑𝑝[𝑆 − {𝑖}][𝑖] + 𝑑𝑖𝑠𝑡(𝑗, 𝑖)) for all 𝑗 ∈ 𝑆, 𝑗 ≠ 𝑖

Where 𝑑𝑖𝑠𝑡(𝑗, 𝑖) is the distance between cities j and I, and 𝑆 −
{𝑖} denotes the subset of cities excluding city i.

Figure 6 Pseudocode for Held-Karp Algorithm

Source:

https://web.archive.org/web/20150208031521/http://www.cs.u

pc.edu/~mjserna/docencia/algofib/P07/dynprog.pdf

E. Supermarket

Supermarket is a large-scale retail establishment also known

as ‘Combination Store’ that primarily sells a wide variety of

food and grocery items, along with household products,

typically organized into category sections or departments. It

offers an extensive range of product categories to fulfil diverse

consumer needs and preferences. Supermarket operated on a

self-service basis where they do not employ salesmen and the

customers have to pick up the good from different racks or bins.

Figure 7 A Supermarket

Source: https://www.britannica.com/money/supermarket

III. IMPLEMENTATION

The demonstration of the Held-Karp algorithm to find the

path to help supermarkets determine the shortest path will be

done with two scenarios:

https://www.lystloc.com/blog/what-is-a-travelling-salesman-problem-tsp/
https://www.lystloc.com/blog/what-is-a-travelling-salesman-problem-tsp/
https://web.archive.org/web/20150208031521/http:/www.cs.upc.edu/~mjserna/docencia/algofib/P07/dynprog.pdf
https://web.archive.org/web/20150208031521/http:/www.cs.upc.edu/~mjserna/docencia/algofib/P07/dynprog.pdf
https://www.britannica.com/money/supermarket

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

A. Simple Layout

For example, given a very simple supermarket layout with 3

categories like the picture below, where the entrance and

checkout locations is same at node 0.

Figure 8 Simple Layout’s Visualized Graph

Source: https://github.com/Incheon21/MatdisMakalah

It can be represented as an adjacency matrix below,

nodes 0 1 2 3

0 0 2 3 4

1 2 0 7 5

2 5 7 0 6

3 4 5 6 0

Then the Held-Karp algorithm can be used to recursively find

the shortest possible path from node 0 back to node 0 again with

the notation below

𝑑𝑝[𝑆][𝑖] = min(𝑑𝑝[𝑆 − {𝑖}][𝑖] + 𝑑𝑖𝑠𝑡(𝑗, 𝑖))

Then, do an initialization

𝑑𝑝[{0}, 0] = 0

Calculation for subset with 2 nodes

• Node 1

𝑑𝑝[{0,1}, 1]

= 𝑑𝑝[{0}][0] + 𝑑𝑖𝑠𝑡(0,1)
= 0 + 2
= 2

• Node 2

𝑑𝑝[{0,2}, 2]

= 𝑑𝑝[{0}][0] + 𝑑𝑖𝑠𝑡(0,2)
= 0 + 3
= 3

• Node 3

𝑑𝑝[{0,3}, 3]

= 𝑑𝑝[{0}][0] + 𝑑𝑖𝑠𝑡(0,3)
= 0 + 4
= 4

Calculation for subsets with 3 nodes

• {0,1,2} subset

𝑑𝑝[{0,1,2}, 2]

= 𝑑𝑝[{0,1}][1] + 𝑑𝑖𝑠𝑡(1,2))
= 2 + 7
= 9

• {0,1,3) subset

𝑑𝑝[{0,1,3}, 3]

= 𝑑𝑝[{0,1}][1] + 𝑑𝑖𝑠𝑡(1,3))
= 2 + 5
= 7

• {0,2,1} subset

𝑑𝑝[{0,2,1}, 1]

= 𝑑𝑝[{0,2}][2] + 𝑑𝑖𝑠𝑡(2,1))
= 3 + 7
= 10

• {0,2,3} subset

𝑑𝑝[{0,2,3}, 3]

= 𝑑𝑝[{0,2}][2] + 𝑑𝑖𝑠𝑡(2,3))
= 3 + 6
= 9

• {0,3,1} subset

𝑑𝑝[{0,3,1}, 1]

= 𝑑𝑝[{0,3}][3] + 𝑑𝑖𝑠𝑡(3,1))
= 4 + 5
= 9

• {0,3,2} subset

𝑑𝑝[{0,3,2}, 2]

= 𝑑𝑝[{0,3}][3] + 𝑑𝑖𝑠𝑡(3,2))
= 4 + 6
= 10

Calculation for subsets with all nodes

• Ends in node 1

𝑑𝑝[{0,1,2,3}, 1]

= min (𝑑𝑝[{0,2,3}][3] +
𝑑𝑖𝑠𝑡(3,1), 𝑑𝑝[{0,3,2}][2] +
𝑑𝑖𝑠𝑡(2,1)
= min (9 + 5,10 + 7)
= 14

• Ends in node 2

𝑑𝑝[{0,1,2,3}, 2]

= min (𝑑𝑝[{0,1,3}][3] +
𝑑𝑖𝑠𝑡(3,2), 𝑑𝑝[{0,3,1}][1] +
𝑑𝑖𝑠𝑡(1,2)
= min (7 + 6,9 + 7)
= 13

• Ends in node 3

𝑑𝑝[{0,1,2,3}, 3]

= min (𝑑𝑝[{0,1,2}][2] +
𝑑𝑖𝑠𝑡(2,3), 𝑑𝑝[{0,2,1}][1] +
𝑑𝑖𝑠𝑡(1,3)
= min (9 + 6,10 + 5)
= 15

Finally, the shortest path that starts can be determined by

choosing the minimum distance from 3 available choices of

path.

Total distance = min (𝑑𝑝[{0,1,2,3}][1] +
𝑑𝑖𝑠𝑡(1,0), 𝑑𝑝[{0,1,2,3}][2] +
𝑑𝑖𝑠𝑡(2,0), 𝑑𝑝[{0,1,2,3}][3] +
𝑑𝑖𝑠𝑡(3,0)
= min (14 + 2,13 + 3,15 + 4)
= 16

This means the shortest path from 0 to 0 again while making

sure all nodes are visited is {0,2,3,1,0} with 16 meters total

distances.

https://github.com/Incheon21/MatdisMakalah

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

The same algorithm can also be used to find the shortest path

from point a to point b where a ≠ b (Hamiltonian path not

circuit). For example, the shortest path from node 0 to node 2

while making sure all nodes are visited is {0, 1, 3, 2} with 13

meters total distance. These paths are visualized below.

Figure 9 0 to 0 path Figure 10 0 to 2 path

Source: https://github.com/Incheon21/MatdisMakalah

B. More Complex Layout

In the more complex layout, the supermarket layout will be

more complex with 5 categories like the picture below, where

the entrance and checkout location is different now. The

entrance is at node 0 and the checkout is at node 6.

Figure 11 More Complex Layout’s Visualized Graph

Source: https://github.com/Incheon21/MatdisMakalah

It can be represented as an adjacency matrix below,

nodes 0 1 2 3 4 5 6

0 ∞ 5 1 ∞ ∞ ∞ ∞

1 5 ∞ 5 ∞ 6 11 ∞

2 1 5 ∞ 3 12 ∞ ∞

3 ∞ ∞ 3 ∞ 4 8 9

4 ∞ 6 12 4 ∞ 7 ∞

5 ∞ ∞ ∞ 8 7 ∞ 10

6 ∞ ∞ ∞ 9 ∞ 10 ∞

For this more complex layout, we will use a program that has

been made using Held-Karp algorithm to calculate the shortest

path (Hamiltonian path).

held_karp(graph, start, end)function using dynamic

programming approach to find the shortest path. It has 3

parameters,

• graph

2D list representing the adjacency matrix of the

supermarket layout graph

• start

Starting node of the path (entrance area)

• end

Ending node of the path (checkout area)

reconstruct_path(parent, last_node, mask, start,

end)function to reconstruct the shortest path or circuit from the

def held_karp(graph, start, end):

 n = len(graph)

 dp = [[float('inf')] * n for _ in range(1 <<

n)] # table for storing shortest weights

 parent = [[-1] * n for _ in range(1 << n)] #

Table to reconstruct the path

 dp[1 << start][start] = 0

 for mask in range(1 << n):

 for u in range(n):

 if mask & (1 << u):

 for v in range(n):

 if not (mask & (1 << v)) and

graph[u][v] != float('inf'):

 new_weight = dp[mask][u] +

graph[u][v]

 if new_weight < dp[mask | (1 <<

v)][v]:

 dp[mask | (1 << v)][v] = new_weight

 parent[mask | (1 << v)][v] = u

 # If start == end, we must return to the start

node

 if start == end:

 min_path_weight = float('inf')

 last_node = -1

 for u in range(n):

 if dp[(1 << n) - 1][u] != float('inf') and

graph[u][start] != float('inf'):

 new_weight = dp[(1 << n) - 1][u] +

graph[u][start]

 if new_weight < min_path_weight:

 min_path_weight = new_weight

 last_node = u

 # path recronstruction

 if min_path_weight != float('inf'):

 path = reconstruct_path(parent, last_node,

(1 << n) - 1, start, end)

 return path, min_path_weight

 # If start != end, find the shortest path to

the end node

 else:

 min_path_weight = float('inf')

 last_node = -1

 for u in range(n):

 if dp[(1 << n) - 1][u] != float('inf') and

graph[u][end] != float('inf'):

 new_weight = dp[(1 << n) - 1][u] +

graph[u][end]

 if new_weight < min_path_weight:

 min_path_weight = new_weight

 last_node = u

 # Path recronstruction

 if min_path_weight != float('inf'):

 path = reconstruct_path(parent, last_node,

(1 << n) - 1, start, end)

 return path, min_path_weight

 return None, float('inf')

https://github.com/Incheon21/MatdisMakalah
https://github.com/Incheon21/MatdisMakalah

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

parent table created during the Held-Karp algorithm. It has 5

parameters,

• parent

The table that stores the previous node for each subset

of visited nodes

• last_node

The last nodes of the path

• mask

The subset of visited nodes

• start

Starting node

• end

Ending node

Main script where the graph is represented into an adjacency

matrix and the Held-Karp algorithm is run.

If the result is printed, it will be like the picture below

Figure 12 Node 0 to 6 Result

Source: https://github.com/Incheon21/MatdisMakalah

The same program can also be used to find the shortest path

from node 0, back to node 0 again, if the supermarkets move the

checkout area to the same location as the entrance area

(Hamiltonian circuit). The result for that case is shown in the

picture below.

Figure 13 Node 0 to 0 Result

Source: https://github.com/Incheon21/MatdisMakalah

These 2 paths/routes is visualized below

Figure 14 0 to 6 Path Figure 15 0 to 0 Path

Source: https://github.com/Incheon21/MatdisMakalah

IV. DISCUSSION

By applying the Held-Karp algorithm to determine the

shortest path, supermarkets can use this to create a predefined

path that can guide customers efficiently through all product

categories. The route/path will not only enhance the shopping

experience by minimizing navigation time but also improve

convenience for consumers. Supermarkets can also use this

shortest path and integrate it with other data/information, like

category popularity data, to strategically relocate category

placements along the route. For instance, more popular

categories can be placed closer to the starting point, allowing

consumers to access high-demand category’s items more

quickly.

This combination of predefined path and data-driven category

placement will further enhance the shopping experience,

offering consumers a streamlined and intuitive journey through

the store. Moreover, increased exposure to all products from

different categories along the routes can lead to higher sales and

boost customer satisfaction, providing supermarkets with

increased profitability.

V. SOME COMMON MISTAKES

 When applying graph theory, specifically Held-Karp

algorithm to optimize supermarket layouts, several common

mistakes can arise, potentially reduce the effectiveness of the

solution. One frequent issue is attempting to use the Held-Karp

algorithm on a graph that lacks a Hamiltonian path or circuit.

Since this algorithm relies on visiting each node exactly once,

its application to such graphs is invalid and results with no path

available. It is important to ensure the graph structure is first

analyzed and validated to confirm the existence of a

Hamiltonian path or circuit.

 Another common mistake is the incorrect representation of the

def reconstruct_path(parent, last_node, mask,

start, end):

 """Reconstructs the path from the DP parent

table."""

 path = []

 current = last_node

 while current != -1:

 path.append(current)

 next_mask = mask ^ (1 << current)

 current = parent[mask][current]

 mask = next_mask

 path.reverse()

 # Reverse to get the correct order

 if start == end: # If it's a circuit, append

the start node to form a loop

 path.append(start)

 return path

graph = [

 [0, 5, 1, float('inf'), float('inf'),

float('inf'), float('inf')], # Node 0

 [5, 0, 5, float('inf'), 6, 11,

float('inf')], # Node 1

 [1, 5, 0, 3, 12, float('inf'),

float('inf')], # Node 2

 [float('inf'), float('inf'), 3, 0, 4, 8,

9], # Node 3

 [float('inf'), 6, 12, 4, 0, 7,

float('inf')], # Node 4

 [float('inf'), float('inf'), float('inf'), 8,

7, 0, 10], # Node 5

 [float('inf'), float('inf'), float('inf'), 9,

float('inf'), 10, 0] # Node 6

]

Input Start and End Node

start_node = 0

end_node = 6

Run Held-Karp Algorithm

shortest_path, shortest_path_weight =

held_karp(graph, start_node, end_node)

https://github.com/Incheon21/MatdisMakalah
https://github.com/Incheon21/MatdisMakalah
https://github.com/Incheon21/MatdisMakalah

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

graph. Mislabeling nodes or edges can lead to inaccurate results

and make the optimization meaningless. Attention to detail

when creating adjacency matrices for the layout representation

is essential to avoid such errors.

 Additionally, failing to map practical constraints, such as one-

way path or restricted access areas, can produce routes that are

theoretically optimal but impractical for real-world use. These

constraints must be adjusted and implemented into the graph

model to ensure the solution can be used for the real layout.

 By recognizing and addressing these common mistakes, the

graph theory can be used to optimize supermarket layouts,

providing efficient and practical solutions to enhance the

shopping experience.

VI. CONCLUSION

The application of graph theory for optimizing supermarket

layout using the Held-Karp algorithm showed great potential.

Both simple and complex layouts can be analyzed to determine

the shortest paths through all product categories. Implementing

these routes as predefined paths will enhance the shopping

experience by guiding consumers efficiently and improving

convenience. Furthermore, it will also increase products

exposure that can lead to higher sales and better customer

satisfaction, providing supermarkets with more profits.

However, we have to mind some cases when the graph

representing the supermarket layout does not have a

Hamiltonian path or circuit. In such cases, the Held-Karp

algorithm cannot be used, and it becomes impossible to

determine a shortest path that visits each node exactly once.

Addressing this limitation requires alternative approaches, such

as modifying the layout or exploring other algorithms that will

not be discussed in this paper.

VII. APPENDIX

1. Github Repository:

https://github.com/Incheon21/MatdisMakalah

VIII. ACKNOWLEDGMENT

The author expresses heartfelt gratitude to Almighty God for

the blessings and guidance during the writing of this paper.

Special thanks are extended to Dr. Ir. Rinaldi Munir, M.T., for

the role as lecturer in the IF1220 Discrete Mathematics course

and for making the lecture materials available on the course

website, which supported the research process. The author also

wishes to acknowledge the unwavering support from family and

friends that were invaluable in completing this paper.

REFERENCES

[1] Munir, Rinaldi. 2023. “Graf (Bag 3)”.

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/22-

Graf-Bagian3-2024.pdf
[2] Balakrishnan, V. K. (1997). Graph Theory (1st ed.). McGraw Hill. ISBN

978-0-07-005489-9

[3] Chaddha, Manvi. 2025. Implementation of Graph in Python.
https://www.codingninjas.com/codestudio/library/implementation-of-

graph-in-python

[4] Euler and Hamiltonian Paths and Circuits | Mathematics for the Liberal
Arts. (n.d.). https://courses.lumenlearning.com/wmopen-

mathforliberalarts/chapter/introduction-euler-paths/

[5] Wright, G. (2024, December 17). What is traveling salesman problem
(TSP)? WhatIs. https://www.techtarget.com/whatis/definition/traveling-

salesman-problem? Accessed: January 7th, 2025]

[6] Wayback machine.
(n.d.). https://web.archive.org/web/20150208031521/http://www.cs.upc.e

du/~mjserna/docencia/algofib/P07/dynprog.pdf [Accessed: January 7th,

2025]
[7] Britannica money. (2025, January

4). https://www.britannica.com/money/supermarket

STATEMENT OF ORIGINALITY

I hereby declare that this paper I have written is my own

work, not an adaptation or translation of someone else's

paper, and not plagiarism.

Bandung, 8th January 2025

Alvin Christopher Santausa

13523033

https://github.com/Incheon21/MatdisMakalah
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/22-Graf-Bagian3-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/22-Graf-Bagian3-2024.pdf
https://www.codingninjas.com/codestudio/library/implementation-of-graph-in-python
https://www.codingninjas.com/codestudio/library/implementation-of-graph-in-python
https://courses.lumenlearning.com/wmopen-mathforliberalarts/chapter/introduction-euler-paths/
https://courses.lumenlearning.com/wmopen-mathforliberalarts/chapter/introduction-euler-paths/
https://www.techtarget.com/whatis/definition/traveling-salesman-problem
https://www.techtarget.com/whatis/definition/traveling-salesman-problem
https://web.archive.org/web/20150208031521/http:/www.cs.upc.edu/~mjserna/docencia/algofib/P07/dynprog.pdf
https://web.archive.org/web/20150208031521/http:/www.cs.upc.edu/~mjserna/docencia/algofib/P07/dynprog.pdf
https://www.britannica.com/money/supermarket

