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Abstract—This paper explores the application of graph theory to 

optimize supermarkets layouts to enhance the consumer 

experience. By representing supermarket layouts as graphs, where 

nodes represent product categories and edges represent distances, 

the shortest through all points (categories) while visiting each 

exactly once can be determined using the Hamiltonian circuit/path. 

This can be solved by using several algorithms, including Held-

Karp algorithm. This approach aims to provide consumers with a 

more convenient shopping experience by ensuring efficient 

navigation through all categories, thereby maximizing product 

exposure. 

 

Keywords—Graph, Hamiltonian Circuit, Hamiltonian Path, 

Travelling Salesman Problem, Held-Karp, Shortest Path. 

 

I.   INTRODUCTION 

Supermarket layouts with numerous categories and aisles 

often make navigation confusing and overwhelming for 

consumers. Consumers/shoppers may find it difficult to locate 

specific items or determine an efficient route through the store. 

It can not only detract the shopping experience but also result in 

missed opportunities for product exposure. 

Stores like IKEA solve this problem by using a “racetrack 

layout” to providing guidance for customers through a 

predefined path, increasing exposure to products. Supermarkets 

could implement a similar solution by using graph theory to find 

an efficient route. Optimal routes from the entrance area to the 

checkout area, while still making sure all categories are visited 

by consumers can be identified using the Hamiltonian path or 

Hamiltonian circuit, depending on the layout 

• If the entrance and checkout are at the same location, 

then we can use the Hamiltonian circuit, otherwise  

• If the entrance and checkout are at different locations, 

we can use the Hamiltonian path. 

This problem is analogous to the Travelling Salesman 

Problem (TSP) where the goal is to find the shortest path from 

node to a node while making sure other nodes are visited exactly 

once. Supermarkets layouts can be represented as a graph, where  

• Nodes represent categories or sections 

• Edges represent paths between categories 

• Weights represent distances 

With this representation, we can find the shortest route we 

need by determining the Hamiltonian path/circuit using the 

Held-Karp algorithm. However, if there is no Hamiltonian 

path/circuit (it is impossible to visit all nodes exactly one time 

from start to finish), then we can not use this approach and have 

to use another approach.  

Once the shortest route is identified, supermarkets can also 

rearrange category locations based on the route order. For 

instance, the most frequently purchased category can be placed 

at the first node of the path/route, second most purchased 

category at the second node, and so on. This will enhance 

consumers’ convenience by not only providing a shortest route 

to go to all categories but also allowing them to find items from 

the most popular category quickly, improving their overall 

shopping experience. 

 

II. THEORETICAL FOUNDATION 

A. Graph 

Graph is an object that consists of a vertex set (V) and an edge 

set (E). Vertex set (V) is a set of points often called vertices or 

nodes, which are the fundamental units of the graph. Edge set 

(E) is a set of connections often called edges or links that 

represent relationships between the vertices. A graph G is 

represented as  

𝐺 = (𝑉, 𝐸) 

Where: 

• 𝑉 is a non-empty finite set of vertices 

• 𝐸 is a set of pairs of elements of 𝑉  

 

 
Figure 1 A Graph 

Source: https://github.com/Incheon21/MatdisMakalah 

 

Graph can be classified based on the nature of their vertices 

and their vertices. There are many types of graphs including 

simple graph, multigraph, directed graph, undirected graph, 
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weighted graph, unweighted graph, and many more. 

 

• Undirected Graph 

 

 
Figure 2 Undirected Graph 

Source: https://github.com/Incheon21/MatdisMakalah  

 

Undirected graph is a type of graph where the edges 

have no direction. This means that if there is an edge 

between two vertices u and v, it can be traversed in 

either direction 

 

• Weighted Graph 

 

 
Figure 3 Weighted Graph 

Source: https://github.com/Incheon21/MatdisMakalah  

 

Weighted Graph is a type of graph where each edge 

is assigned to a numerical value called weight. These 

weights can represent various properties such as 

distance, cost, time, or capacity on the application. 

 

Graphs are versatile structures used to model relationships, 

interactions, and networks across a wide range of disciplines. 

Their flexibility and applicability make them fundamental in 

many real-world scenarios. They are commonly represented 

using mathematical structures like matrices or lists to simplify 

analyzing and working with graphs computationally. The choice 

of representation depends on the graph’s characteristics and the 

computational problem being solved. Graphs can be represented 

as an adjacency matrix, incidence matrix, adjacency list, and 

many more. 

1. Adjacency Matrix 

 

Nodes 1 2 3 4 5 

1 0 1 1 1 0 

2 1 0 0 1 0 

3 1 0 0 0 0 

4 1 1 0 0 1 

5 0 0 0 1 0 

 

Adjacency matrix is a square matrix A of size 

|𝑉| × |𝑉|, where |𝑉| is the number of vertices in the 

graph [3]. Each element 𝑎𝑖𝑗  represents the relationship 

between vertices 𝑖 and 𝑗. In the undirected graph, the 

matrix is symmetric, 𝑎𝑖𝑗 =  𝑎𝑖𝑗, but in the directed 

graph, the matrix may not be symmetric, as 𝑎𝑖𝑗  ≠ 𝑎𝑖𝑗. 

In the weighted graph, the matrix entries 𝑎𝑖𝑗  store the 

weight of the edge. If there is no edge, the value is 

typically 0 or ∞. In unweighted graph, the matrix 

entries 𝑎𝑖𝑗  are 1 (edge exists) or 0 (no edge). 

 

B. Hamiltonian Circuit/Path 

In graph theory, a Hamilton circuit is a circuit that visits every 

vertex exactly once, without repeating any vertex. Similarly, a 

Hamilton path also visits every vertex once with no repeats, 

but have different start and end vertex [4]. These concepts are 

crucial in solving optimization problems where traversing all 

points efficiently is necessary, such as in logistics, network 

design, or supermarket layout optimization. 

 
Figure 4 A Supermarket 

Source: https://study.com/academy/lesson/hamilton-circuits-

and-hamilton-paths.html  
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C. Travelling Salesman problem (TSP) 

 

 
Figure 5 Travelling Salesman Problem  

Source: https://www.lystloc.com/blog/what-is-a-

travelling-salesman-problem-tsp/ 

 

Travelling Salesman Problem (TSP) is a classic optimization 

problem in mathematics and computer science that formulated 

in 1930 by Karl Menger. It involves finding the shortest possible 

route for a salesman to visit a given set of cities exactly once and 

return to the starting point (Hamiltonian cycle). TSP has 

practical applications in various fields, far beyond its humble 

beginnings. It applied in logistics (optimizing delivery routes), 

manufacturing (tool path optimizations), DNA sequencing, and 

many more. TSP is classified as an NP-hard problem, meaning 

that as the number of cities increases, the complexity of finding 

an optimal solution grows exponentially, making it 

computationally challenging to solve for large datasets. There 

are two approaches to solve TSP.  

1. Exact Algorithms 

the brute-force approach can be used to evaluate all 

possible permutations to find the optimal route  

2. Heuristic and Approximation Algorithms 

It is useful for larger instances because it provides 

approximate solutions within a reasonable timeframe 

but does not guarantee the optimal solution. 

 

D. Held-Karp Algorithm 

Held-Karp algorithm or Bellman-Held-Karp algorithm is a 

dynamic programming solution that found by Bellman, Held, 

and Karp to solve the Travelling Salesman Problem (TSP) 

exactly. This algorithm accepts a distance matrix of a cities set 

and then it will find significantly reduces the time complexity 

compared to brute-force methods by storing and reusing 

intermediate results (subproblems). This algorithm has better 

time complexity 𝑂(2𝑛 ∙ 𝑛) rather than the time complexity 

𝑂(𝑛!) of brute-force approach. The Held-Karp algorithm builds 

the solution incrementally by breaking the problem into smaller 

subproblems, using dynamic programming to avoid redundant 

computations, and exploring all possible subsets of cities to find 

the shortest path to each subset, and finally combining these 

results. 

The key idea of this algorithm is to represent the problem 

using subsets of cities. It defines a dynamic programming table 

𝑑𝑝[𝑆][𝑖], where S is a subset of cities, and i is the last city visited 

in the subset. The value of 𝑑𝑝[𝑆][𝑖] stores the shortest path that 

visits all cities in the subset S and ends at city i. The algorithm 

builds the solution incrementally with the recursive relation: 

𝑑𝑝[𝑆][𝑖] = min(𝑑𝑝[𝑆 − {𝑖}][𝑖] + 𝑑𝑖𝑠𝑡(𝑗, 𝑖)) for all 𝑗 ∈ 𝑆, 𝑗 ≠ 𝑖 

Where 𝑑𝑖𝑠𝑡(𝑗, 𝑖) is the distance between cities j and I, and 𝑆 −
{𝑖} denotes the subset of cities excluding city i. 

 

 
Figure 6 Pseudocode for Held-Karp Algorithm 

Source: 

https://web.archive.org/web/20150208031521/http://www.cs.u

pc.edu/~mjserna/docencia/algofib/P07/dynprog.pdf 

 

E. Supermarket 

Supermarket is a large-scale retail establishment also known 

as ‘Combination Store’ that primarily sells a wide variety of 

food and grocery items, along with household products, 

typically organized into category sections or departments. It 

offers an extensive range of product categories to fulfil diverse 

consumer needs and preferences. Supermarket operated on a 

self-service basis where they do not employ salesmen and the 

customers have to pick up the good from different racks or bins. 

 
Figure 7 A Supermarket 

Source: https://www.britannica.com/money/supermarket  

 

III.   IMPLEMENTATION 

The demonstration of the Held-Karp algorithm to find the 

path to help supermarkets determine the shortest path will be 

done with two scenarios: 
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A. Simple Layout 

For example, given a very simple supermarket layout with 3 

categories like the picture below, where the entrance and 

checkout locations is same at node 0. 

 
Figure 8 Simple Layout’s Visualized Graph 

Source: https://github.com/Incheon21/MatdisMakalah 

 

It can be represented as an adjacency matrix below, 

nodes 0 1 2 3 

0 0 2 3 4 

1 2 0 7 5 

2 5 7 0 6 

3 4 5 6 0 

 

Then the Held-Karp algorithm can be used to recursively find 

the shortest possible path from node 0 back to node 0 again with 

the notation below 

 

𝑑𝑝[𝑆][𝑖] = min(𝑑𝑝[𝑆 − {𝑖}][𝑖] + 𝑑𝑖𝑠𝑡(𝑗, 𝑖)) 

 

Then, do an initialization 

 

𝑑𝑝[{0}, 0] = 0 

 

Calculation for subset with 2 nodes 

• Node 1 

𝑑𝑝[{0,1}, 1] 
 

 

= 𝑑𝑝[{0}][0] + 𝑑𝑖𝑠𝑡(0,1) 
= 0 + 2 
= 2 

• Node 2 

𝑑𝑝[{0,2}, 2] 
 

 

= 𝑑𝑝[{0}][0] + 𝑑𝑖𝑠𝑡(0,2) 
= 0 + 3 
= 3 

 

• Node 3 

𝑑𝑝[{0,3}, 3] 
 

 

= 𝑑𝑝[{0}][0] + 𝑑𝑖𝑠𝑡(0,3) 
= 0 + 4 
= 4 

Calculation for subsets with 3 nodes 

• {0,1,2} subset 

𝑑𝑝[{0,1,2}, 2] 
 

 

= 𝑑𝑝[{0,1}][1] + 𝑑𝑖𝑠𝑡(1,2)) 
= 2 + 7 
= 9 

• {0,1,3) subset 

𝑑𝑝[{0,1,3}, 3] 
 

 

= 𝑑𝑝[{0,1}][1] + 𝑑𝑖𝑠𝑡(1,3)) 
= 2 + 5 
= 7 

• {0,2,1} subset 

𝑑𝑝[{0,2,1}, 1] 
 

 

= 𝑑𝑝[{0,2}][2] + 𝑑𝑖𝑠𝑡(2,1)) 
= 3 + 7 
= 10 

• {0,2,3} subset 

𝑑𝑝[{0,2,3}, 3] 
 

 

= 𝑑𝑝[{0,2}][2] + 𝑑𝑖𝑠𝑡(2,3)) 
= 3 + 6 
= 9 

• {0,3,1} subset 

𝑑𝑝[{0,3,1}, 1] 
 

 

= 𝑑𝑝[{0,3}][3] + 𝑑𝑖𝑠𝑡(3,1)) 
= 4 + 5 
= 9 

• {0,3,2} subset 

𝑑𝑝[{0,3,2}, 2] 
 

 

= 𝑑𝑝[{0,3}][3] + 𝑑𝑖𝑠𝑡(3,2)) 
= 4 + 6 
= 10 

 

Calculation for subsets with all nodes 

• Ends in node 1 

𝑑𝑝[{0,1,2,3}, 1] 
 

 

= min (𝑑𝑝[{0,2,3}][3] + 
𝑑𝑖𝑠𝑡(3,1), 𝑑𝑝[{0,3,2}][2] + 
𝑑𝑖𝑠𝑡(2,1) 
= min (9 + 5,10 + 7) 
= 14 

• Ends in node 2 

𝑑𝑝[{0,1,2,3}, 2] 
 

 

= min (𝑑𝑝[{0,1,3}][3] + 
𝑑𝑖𝑠𝑡(3,2), 𝑑𝑝[{0,3,1}][1] + 
𝑑𝑖𝑠𝑡(1,2) 
= min (7 + 6,9 + 7) 
= 13 

• Ends in node 3 

𝑑𝑝[{0,1,2,3}, 3] 
 

 

= min (𝑑𝑝[{0,1,2}][2] + 
𝑑𝑖𝑠𝑡(2,3), 𝑑𝑝[{0,2,1}][1] + 
𝑑𝑖𝑠𝑡(1,3) 
= min (9 + 6,10 + 5) 
= 15 

 

Finally, the shortest path that starts can be determined by 

choosing the minimum distance from 3 available choices of 

path. 

 

Total distance = min (𝑑𝑝[{0,1,2,3}][1] + 
𝑑𝑖𝑠𝑡(1,0), 𝑑𝑝[{0,1,2,3}][2] + 
𝑑𝑖𝑠𝑡(2,0), 𝑑𝑝[{0,1,2,3}][3] + 
𝑑𝑖𝑠𝑡(3,0) 
= min (14 + 2,13 + 3,15 + 4) 
= 16 

 

This means the shortest path from 0 to 0 again while making 

sure all nodes are visited is {0,2,3,1,0} with 16 meters total 

distances.  
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The same algorithm can also be used to find the shortest path 

from point a to point b where a ≠ b (Hamiltonian path not 

circuit). For example, the shortest path from node 0 to node 2 

while making sure all nodes are visited is {0, 1, 3, 2} with 13 

meters total distance. These paths are visualized below. 

 

  
Figure 9 0 to 0 path Figure 10 0 to 2 path 

Source: https://github.com/Incheon21/MatdisMakalah 

 

B. More Complex Layout 

In the more complex layout, the supermarket layout will be 

more complex with 5 categories like the picture below, where 

the entrance and checkout location is different now. The 

entrance is at node 0 and the checkout is at node 6. 

 

 
Figure 11 More Complex Layout’s Visualized Graph 

Source: https://github.com/Incheon21/MatdisMakalah 

 

It can be represented as an adjacency matrix below, 

nodes 0 1 2 3 4 5 6 

0 ∞ 5 1 ∞ ∞ ∞ ∞ 

1 5 ∞ 5 ∞ 6 11 ∞ 

2 1 5 ∞ 3 12 ∞ ∞ 

3 ∞ ∞ 3 ∞ 4 8 9 

4 ∞ 6 12 4 ∞ 7 ∞ 

5 ∞ ∞ ∞ 8 7 ∞ 10 

6 ∞ ∞ ∞ 9 ∞ 10 ∞ 

 

For this more complex layout, we will use a program that has 

been made using Held-Karp algorithm to calculate the shortest 

path (Hamiltonian path). 

 

held_karp(graph, start, end)function using dynamic 

programming approach to find the shortest path. It has 3 

parameters, 

• graph 

2D list representing the adjacency matrix of the 

supermarket layout graph 

• start 

Starting node of the path (entrance area) 

• end 

Ending node of the path (checkout area) 

 
 

reconstruct_path(parent, last_node, mask, start, 

end)function to reconstruct the shortest path or circuit from the 

def held_karp(graph, start, end): 

  n = len(graph) 

  dp = [[float('inf')] * n for _ in range(1 << 

n)]  # table for storing shortest weights 

  parent = [[-1] * n for _ in range(1 << n)]  # 

Table to reconstruct the path 

  dp[1 << start][start] = 0  

   

  for mask in range(1 << n): 

    for u in range(n):   

      if mask & (1 << u):   

        for v in range(n):   

          if not (mask & (1 << v)) and 

graph[u][v] != float('inf'):   

            new_weight = dp[mask][u] + 

graph[u][v] 

            if new_weight < dp[mask | (1 << 

v)][v]: 

              dp[mask | (1 << v)][v] = new_weight 

              parent[mask | (1 << v)][v] = u 

  # If start == end, we must return to the start 

node 

  if start == end: 

    min_path_weight = float('inf') 

    last_node = -1 

    for u in range(n): 

      if dp[(1 << n) - 1][u] != float('inf') and 

graph[u][start] != float('inf'):  

        new_weight = dp[(1 << n) - 1][u] + 

graph[u][start] 

        if new_weight < min_path_weight: 

          min_path_weight = new_weight 

          last_node = u 

    # path recronstruction 

    if min_path_weight != float('inf'): 

      path = reconstruct_path(parent, last_node, 

(1 << n) - 1, start, end) 

      return path, min_path_weight 

  # If start != end, find the shortest path to 

the end node 

  else: 

    min_path_weight = float('inf') 

    last_node = -1 

    for u in range(n): 

      if dp[(1 << n) - 1][u] != float('inf') and 

graph[u][end] != float('inf'): 

        new_weight = dp[(1 << n) - 1][u] + 

graph[u][end] 

        if new_weight < min_path_weight: 

          min_path_weight = new_weight 

          last_node = u 

    # Path recronstruction 

    if min_path_weight != float('inf'): 

      path = reconstruct_path(parent, last_node, 

(1 << n) - 1, start, end) 

      return path, min_path_weight 

   

  return None, float('inf') 
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parent table created during the Held-Karp algorithm. It has 5 

parameters, 

• parent 

The table that stores the previous node for each subset 

of visited nodes 

• last_node 

The last nodes of the path 

• mask 

The subset of visited nodes 

• start 

Starting node 

• end 

Ending node 

 
 

Main script where the graph is represented into an adjacency 

matrix and the Held-Karp algorithm is run. 

 
 

If the result is printed, it will be like the picture below 

 

 
Figure 12 Node 0 to 6 Result 

Source: https://github.com/Incheon21/MatdisMakalah  

 

The same program can also be used to find the shortest path 

from node 0, back to node 0 again, if the supermarkets move the 

checkout area to the same location as the entrance area 

(Hamiltonian circuit). The result for that case is shown in the 

picture below. 

 

 
Figure 13 Node 0 to 0 Result 

Source: https://github.com/Incheon21/MatdisMakalah 

 

These 2 paths/routes is visualized below 

  
Figure 14 0 to 6 Path Figure 15 0 to 0 Path 

Source: https://github.com/Incheon21/MatdisMakalah  

 

IV.   DISCUSSION 

By applying the Held-Karp algorithm to determine the 

shortest path, supermarkets can use this to create a predefined 

path that can guide customers efficiently through all product 

categories. The route/path will not only enhance the shopping 

experience by minimizing navigation time but also improve 

convenience for consumers. Supermarkets can also use this 

shortest path and integrate it with other data/information, like 

category popularity data, to strategically relocate category 

placements along the route. For instance, more popular 

categories can be placed closer to the starting point, allowing 

consumers to access high-demand category’s items more 

quickly.  

This combination of predefined path and data-driven category 

placement will further enhance the shopping experience, 

offering consumers a streamlined and intuitive journey through 

the store. Moreover, increased exposure to all products from 

different categories along the routes can lead to higher sales and 

boost customer satisfaction, providing supermarkets with 

increased profitability. 

 

V.   SOME COMMON MISTAKES 

 When applying graph theory, specifically Held-Karp 

algorithm to optimize supermarket layouts, several common 

mistakes can arise, potentially reduce the effectiveness of the 

solution. One frequent issue is attempting to use the Held-Karp 

algorithm on a graph that lacks a Hamiltonian path or circuit. 

Since this algorithm relies on visiting each node exactly once, 

its application to such graphs is invalid and results with no path 

available. It is important to ensure the graph structure is first 

analyzed and validated to confirm the existence of a 

Hamiltonian path or circuit. 

 Another common mistake is the incorrect representation of the 

def reconstruct_path(parent, last_node, mask, 

start, end): 

  """Reconstructs the path from the DP parent 

table.""" 

  path = [] 

  current = last_node 

 

  while current != -1: 

    path.append(current) 

    next_mask = mask ^ (1 << current) 

    current = parent[mask][current] 

    mask = next_mask 

  path.reverse() 

    # Reverse to get the correct order 

  if start == end:  # If it's a circuit, append 

the start node to form a loop 

    path.append(start) 

 

  return path 

graph = [ 

  [0, 5, 1, float('inf'), float('inf'), 

float('inf'), float('inf')],  # Node 0 

  [5, 0, 5, float('inf'), 6, 11, 

float('inf')],                       # Node 1 

  [1, 5, 0, 3, 12, float('inf'), 

float('inf')],                       # Node 2 

  [float('inf'), float('inf'), 3, 0, 4, 8, 

9],                        # Node 3 

  [float('inf'), 6, 12, 4, 0, 7, 

float('inf')],                       # Node 4 

  [float('inf'), float('inf'), float('inf'), 8, 

7, 0, 10],            # Node 5 

  [float('inf'), float('inf'), float('inf'), 9, 

float('inf'), 10, 0]  # Node 6 

] 

 

# Input Start and End Node 

start_node = 0   

end_node = 6 

 

# Run Held-Karp Algorithm 

shortest_path, shortest_path_weight = 

held_karp(graph, start_node, end_node) 
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graph. Mislabeling nodes or edges can lead to inaccurate results 

and make the optimization meaningless. Attention to detail 

when creating adjacency matrices for the layout representation 

is essential to avoid such errors. 

 Additionally, failing to map practical constraints, such as one-

way path or restricted access areas, can produce routes that are 

theoretically optimal but impractical for real-world use. These 

constraints must be adjusted and implemented into the graph 

model to ensure the solution can be used for the real layout. 

 By recognizing and addressing these common mistakes, the 

graph theory can be used to optimize supermarket layouts, 

providing efficient and practical solutions to enhance the 

shopping experience. 

 

VI.   CONCLUSION 

The application of graph theory for optimizing supermarket 

layout using the Held-Karp algorithm showed great potential. 

Both simple and complex layouts can be analyzed to determine 

the shortest paths through all product categories. Implementing 

these routes as predefined paths will enhance the shopping 

experience by guiding consumers efficiently and improving 

convenience. Furthermore, it will also increase products 

exposure that can lead to higher sales and better customer 

satisfaction, providing supermarkets with more profits. 

However, we have to mind some cases when the graph 

representing the supermarket layout does not have a 

Hamiltonian path or circuit. In such cases, the Held-Karp 

algorithm cannot be used, and it becomes impossible to 

determine a shortest path that visits each node exactly once. 

Addressing this limitation requires alternative approaches, such 

as modifying the layout or exploring other algorithms that will 

not be discussed in this paper. 

 

VII.   APPENDIX 

1. Github Repository: 

https://github.com/Incheon21/MatdisMakalah 
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